

EWX8D2: EWX10D2

EWX12D2 : EWX15D2

USER MANUAL

Installation Instructions | Owners Manual

Due to continuous improvement of the product, specifications are subject to change without notice.

Introduction

Congratulations on your purchase of a DB Drive state-of-the-art subwoofer. Your selection of a DB Drive car audio product indicates a true appreciation of fine musical reproduction. Whether adding to an existing system or including your DB Drive subwoofer in a new system, you are certain to notice immediate performance benefits.

Keep Your Sales Receipt

Take this time to attach your sales receipt to the manual and put in a safe place. In case of any unforeseen reason this product may need warranty service, your receipt will be necessary to establish purchase date.

Recommendation

A power subwoofer's performance is only as good as its installation. Proper installation will maximize the system's overall performance. It is recommended that you have our product installed by an authorized DB Drive retailer. However, if you decide to install it yourself, please carefully read through this manual and take your time to do a quality installation.

IMPORTANT!

Before making any connections, disconnect the car's battery until the installation is completed to avoid possible damage to the electrical system.

WARNING:

Exposure to high power sound system can cause hearling loss or damange. Listening to your system at loud levels while driving will impair your ability to hear traffic sounds and emergency vehicles. Use common sense when listening to your system.

Serial #	M <u>o</u> del #

PRODUCT SPECIFICATIONS

TS SPECS	EWX8D2	EWX10D2	EWX12D2	EWX15D2
Resonant Frequency (fs)	46.4 Hz	40.1 Hz	36.8 Hz	32.3 Hz
DC Resistance (Re)	3.6 Ω	3.6Ω	3.6 Ω	3.6 Ω
Mechanical (Qms)	6.05	6.61	6.71	6.58
Electromagnetic (Qes)	0.63	0.63	0.66	0.67
Total Q (Qts)	0.57	0.58	0.60	0.61
Compliance Equivalent Volume (Vas)	6.7L	12.8L	24.1L	69.7L
$Me chanical Compliance of Suspension \hbox{\it (Cms)}$	0.12mm/N	0.07mm/N	0.06mm/N	0.07mm/N
BL Product (BI)	13 N/A	18.5 N/A	19.3 N/A	19.1 N/A
Diaphragm Mass inc. Airload (Mms)	101.7 gr	239.9 gr	296 gr	334.9 gr
Sound Pressure Level (SPL)	82.1dB	83.0dB	84.4dB	87.3dB
X-Max	16.76 mm	16.76 mm	17.78 mm	17.78 mm

CALCULATING ENCLOSURES

It is recommended to build your enclosure from at least 3/4" thick MDF (medium density fiberboard). Make sure the enclosure is sealed airtight.

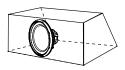
Calculating External Volume

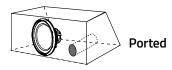
To calculate box volume, measure the outside Width x Height x Depth of the enclosure. Example 12" x 14" x 9"=1512 ÷ 1728" Cubic feet

Next you must convert cubic inches into cubic feet. To do this, you must divide the cubic inches total by 1728". Example 1512 - 1728=.875 Cubic feet

Calculating Internal Volume

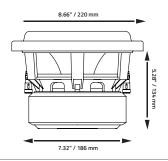
To calculate the internal (net) volume of the above box you must first multiply the thickness of the wood you are using by Two(2). Example 3/4" x 2= 1.5"

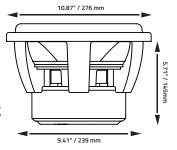

Next subtract 1.5 from each of the outside measurements of the box.


Width	Height	Depth
12 - 1.5 = 10.5	14 - 1.5 = 12.5	9 - 1.5 = 7.5
Multiple the new totals (H	x W x D) Example:	10.5 x 12.5 x 7.5 = .5696

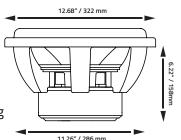
Next you must convert cubic inches into cubic feet. To do this, you must divide the cubic inch total by 1728". *Example 984.375 ÷ 1728=.5696 cubic feet.*

RECOMMENDED ENCLOSURES

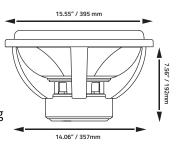

Sealed


EWX8D2 Sealed 0.5 cuft.

Vented 0.94 cuft Round vent 3" long x 18" long Or 8 square inches of surface area x 20" long Tuned @ 38Hz


EWX10D2 Sealed 1.27 cuft.

Vented 1.49 cuft. Round vent 4" long x 14" long Or 12.57 square inches of surface area x 14" long Tuned @ 38Hz


EWX12D2 Sealed 1.49 cuft.

Vented 1.8 cuft Round vent 4" long x 10" long Or 12.57 square inches of surface area x 10" long Tuned @ 38Hz

EWX15D2 Sealed 2.8 cuft.

Vented 3.10 cuft Round vent 6" long x 20" long Or 28.27 square inches of surface area x 20" long Tuned @ 35Hz

